Bayesian Joint Inversions for the Exploration of Earth Resources
نویسندگان
چکیده
We propose a machine learning approach to geophysical inversion problems for the exploration of earth resources. Our approach is based on nonparametric Bayesian methods, specifically, Gaussian processes, and provides a full distribution over the predicted geophysical properties whilst enabling the incorporation of data from different modalities. We assess our method both qualitatively and quantitatively using a real dataset from South Australia containing gravity and drill-hole data and through simulated experiments involving gravity, drill-holes and magnetics, with the goal of characterizing rock densities. The significance of our probabilistic inversion extends to general exploration problems with potential to dramatically benefit the industry.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملRNA-Seq Bayesian Network Exploration of Immune System in Bovine
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...
متن کاملComparison of bauxite resources – geo-economical considerations
In order to meet the significantly increased metal demand of the world market, it has been decided to expand the capacity of the existing alumina refineries and to set up new plants (more than 2 Mt/a each). The selection among the bauxite sources is based on previous exploration data, such as: tonnage, grade, mineralogy, etc., the geographical position of the deposit, existing natural and const...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملApplication of Bayesian decision making tool in detecting oil-water contact in a carbonate reservoir
Detection of Oil-Water Contacts (OWCs) is one of the primary tasks before evaluation of reservoir’s hydrocarbon in place, determining net pay zones and suitable depths for perforation operation. This paper introduces Bayesian decision making tool as an effective technique in OWC detecting using wire line logs. To compare strengths of the suggested method in detecting OWC with conventional one, ...
متن کامل